# extremEmat

NETL-Led National
Laboratory Consortium to
Accelerate the Development
of Extreme Environment
Materials











### **OBJECTIVE**

Develop the next generation of toolsets needed to accelerate the development of materials to improve the existing fleet and enable next generation fossil energy systems.

#### **CONSORTIUM APPROACH**

 Integrate the extensive computational materials modeling, data analytics, manufacturing, testing, and materials characterization capabilities resident within the National Laboratory complex in order to develop and demonstrate a framework to accelerate materials development.

#### PROJECT SPECIFIC OBJECTIVES

- Create the next generation of Cross-cutting computational and experimental toolsets focused on accelerating discovery and scale-up for reliably manufacturing materials at scale.
- Demonstrate application of toolset by developing a new alloy with either 50°F or 25% increase in strength.

## ACCOMPLISHMENTS

## **EXTREME ENVIRONMENT**ROADMAP DEVELOPED

NETL completed the Extreme Environment Materials (EEM) Technology Roadmap for Fossil Energy Application. The Consortium began to address research needs identified in the EEM Roadmap in the last quarter of 2017.



## IMPORTANCE

AFFORDABLE AND DURABLE MATERIALS ARE A KEY ENABLING TECHNOLOGY THAT CROSS-CUTS FOSSIL ENERGY PLATFORMS AND SYSTEMS.

#### Reducing the Materials Design Cycle

Physics-based modeling tools
High-throughput screening tools

High-Throughput Thermodynamic/
Kinetic Data Tools

Chemistry
Performance
Requirements

Processing
Microstructure
Modeling Tools

High-Throughput Mechanical
Property
Modeling Tools

High-Throughput Mechanical/Physical
Properties Tools

- Achieve Cost/Time Reduction
- Predict Materials Service Performance & Manage Part Life
- Goal: 2x to 4x Reduction in Time to Insert a New Material

Processing of Superalloys for Cost & Sustainment,
San Diego, CA, February 28, 2011

### **DOE-FE/NETL Vision**

Design

**Validated** 

structure,

simulations linking

processing, and

performance

**Accelerate the** 

deployment of

cost-effective

materials by 2x

for extreme

environment

applications

identification and

## "Born Qualified" EEMs Atoms to Metals ICME multi-scale computational

ICME multi-scale computational approaches incorporating best practice manufacturing and focused performance evaluation and characterization

Targeted Validation

Targeted Validation
Experiments
Conducted in industrial relevant environments and scales

Manufacture

Performance

Data Informatics and Analytics
 Analyze the large volume of data generated from materials testing

 Incorporate learning to improve predictive capability of simulations and reduce uncertainty

## \$764,000

FY 2017 BUDGET — ALL PARTNERS

#### CONTACT INFORMATION

Technology Manager – Briggs White Principal Investigator – Jeff Hawk HQ Program Manager – Regis Conrad







